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Abstract

We investigate the effect of curvature on the accuracy of schemes used to transfer loads along the interface in coupled
fluid–solid simulations involving non-matching meshes. We analyze two types of load transfer schemes for the coupled
system: (a) point-to-element projection schemes and (b) common-refinement schemes. The accuracy of these schemes over
the curved interface is assessed with the aid of static and transient problems. We show that the point-to-element projection
schemes may yield inaccurate load transfer from the source fluid mesh to the target solid mesh, leading to a weak instability
in the form of spurious oscillations and overshoots in the interface solution. The common-refinement scheme resolves this
problem by providing an accurate transfer of discrete interface conditions across non-matching meshes. We show theoret-
ically that the accurate transfer preserves the stability of the coupled system while maintaining the energy conservation
over a reference interface. Finally, we introduce simple analytical error functions which correlate well with the numerical
errors of the load transfer schemes.
� 2006 Elsevier Inc. All rights reserved.
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1. Introduction

Non-overlapping domain decomposition methods with non-matching meshes have many applications rang-
ing from contact mechanics [1–3], parallel processing [4,5] and electromagnetism [6]. The specific problem con-
sidered in this paper is the transfer of fluid traction field across dissimilar non-matching meshes in transient
fluid–solid interaction (FSI). Such FSI problems are characterized by the dynamic nature of the interface load-
ing and of the associated solid response, which may involve strong material (plasticity, visco-plasticity) and/or
geometrical (large deformations and rotations) nonlinearity. The simulation of this class of problems is gen-
erally accomplished by loosely coupled schemes [7] based upon an explicit time marching scheme, with a
Lagrangian finite element formulation for the solid domain, and an Arbitrary Lagrangian Eulerian (ALE)
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finite volume formulation for the fluid domain. The role of an FSI interface scheme is to ensure appropriate
coupling between the two domains. This coupling procedure can be challenging when the two domains have
non-matching meshes along the interface.

A number of interfacing methods have been proposed to solve FSI problems and can be categorized as
either non-conservative or conservative schemes. The former do not conserve the work done by the fluid trac-
tions transferred to the solid mesh, and therefore need fine meshes for both the fluid and solid domains to give
reasonable results [8,9]. Traditional conservative methods rely on point-to-element transfer, e.g., node-
projection [10] and quadrature-projection [11] schemes, and on point-to-point transfer [12]. However, these
conservative methods often suffer from a lack of accuracy in transferring loads across non-matching meshes
as presented for the point-to-element schemes in [13].

An alternative approach described in [13,14] utilizes a least squares projection to achieve both accuracy and
conservation of energy. This approach includes an orthogonal projection of two non-matching meshes and a
systematic subdivision of the surface of intersection into ‘‘subelements’’ by constructing a common refinement
of the input meshes. This subelement-to-subelement transfer enables robust and accurate numerical quadra-
ture scheme to evaluate the spatial integral defining the load transfer.

In a recent paper [13], we have systematically assessed the accuracy of the point-to-element and subelement-
to-subelement load transfer schemes for flat non-matching interfaces. In the point-to-element projection
schemes, the integrand exhibits discontinuities that generally lead to load transfer errors depending on the
fluid–solid grid mismatch along the interface. These errors not only affect the solution along the interface
but also can significantly undermine the solutions in the fluid and solid subdomains. In addition, the spurious
oscillations and overshoots along the interface may cause a weak instability in the FSI simulations in terms of
spurious oscillations and overshoots [15].

On the other hand, we showed in [13] that, by utilizing the common-refinement based mapping and inte-
grating over the subelements, the error in the subelement-to-subelement transfer becomes independent of
the element mismatch along the interface. As a result, the solution obtained with non-matching meshes is effec-
tively identical to the solution associated with matching meshes. These findings were demonstrated first with
the aid of a simple 1D static load transfer analysis, and then through three transient FSI problems of increas-
ing complexity.

The studies of load transfer schemes presented in [13] assumed the interfaces to be flat and the geometries of
the interface meshes to match well. For practical problems, the interface between fluid and solid domains are
often curved, and hence the geometries of the fluid and solid meshes may mismatch severely along the interface
(Fig. 1), although they approximate the same physical interface. This mismatch can lead to discrepancies in the
normals, areas, etc., and hence affect adversely the accuracy of the coupled simulations.
Fig. 1. Schematic of sample region showing non-matching discretization of the same physical interface C.
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Therefore, our emphasis in this paper is to study the accuracy of conservative load transfer along curved

interfaces in coupled-field problems with the aid of an explicit 2D loosely coupled fluid–solid interaction
(FSI) framework using a partitioned approach. The framework combines a compressible fluid solver, an expli-
cit elasto-dynamic solid solver, and the aforementioned conservative load transfer schemes. The scope of the
present work is to remove the necessity of matching meshes and to redesign a more general projection scheme
for non-matching fluid and solid nodes along curved interfaces. We consider only 2D problems with smooth
curved interfaces for simplicity. However, this study may extend to 3D and complex geometries [14].

The outline of this paper is as follows: Section 2 summarizes the interface coupling conditions and the three
load transfer schemes studied in this work. In Section 3, we propose a concept of reference interface for
conservation of energy and justify that satisfying the continuity conditions element-wise is sufficient for the
stability of transient FSI simulations. The remainder of the paper presents a detailed comparative study of
the spatial accuracy of the load transfer schemes, performed with the aid of a static circular-arc load transfer
problem (Section 4), a transient super-seismic shock-bump interaction problem (Section 5) and a more phys-
ically realistic blast wave problem (Section 6). A key outcome of this experimental study is the set of simple
analytical error indicators introduced in Section 4.

2. Load transfer schemes: review

Before addressing load transfer along curved interfaces, we provide for completeness a short description of
the interface conditions and the load transfer schemes.

2.1. Interface conditions

We consider a coupled FSI model, which consists of a fluid domain Xf, a solid domain Xs, and a common
interface boundary C = oXf \ oXs. At each FSI cycle, two interface boundary conditions corresponding to the
continuity of tractions and velocities must be satisfied along C. Let tf and uf denote the fluid traction vector
and displacement fields along the fluid interface Cf, while ts and us denote the solid traction vector and
displacement fields along the solid interface Cs, respectively. The equilibrium of tractions and compatibility
of velocity field can be expressed as
ts ¼ tf ;
ous

ot
¼ ouf

ot
on C; ð1Þ
where tf = pfnf � rf Æ nf and ts = rs Æ ns. Here, pf is the fluid pressure along the interface; rf and rs are the fluid
viscous tensor and solid stress tensor, respectively; nf and ns are the unit outward normals along the fluid inter-
face Cf and solid interface Cs, respectively.

To consider the discrete problem, let Ni
f and Nj

s denote the standard finite element shape functions associ-
ated with node i of the fluid and node j of the solid interface mesh, respectively, and ~ti

f 2 L2ðXfÞ and ~tj
s 2 L2ðXsÞ

the approximate tractions at the corresponding nodes of the discrete fluid interface Ch
f and solid interface Ch

f .
Let mf and ms be the number of fluid and solid nodes on the fluid and solid interface meshes, respectively. The
continuum traction fields tf and ts over Cf and Cs are interpolated as
tfðxÞ �
Xmf

i¼1

Ni
fðxÞ~ti

f ; tsðxÞ �
Xms

j¼1

N j
sðxÞ~tj

s. ð2Þ
The transfer of distributed loads consists therefore in solving for ~tj
s, given ~ti

f ;N
i
f , and N j

s. To obtain good
approximations for ~ts, we minimize the L2 norm of the residual ts � tf, i.e.,
kts � tfk2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiZ

C
ðts � tfÞT ðts � tfÞdC

s
. ð3Þ
This minimization problem can be solved with the aid of the Galerkin weighted residual method [16] by mul-
tiplying both sides by a set of weighting functions ðW i ¼ Ni

sÞ and integrating over the interface boundary C,
i.e.,
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Z
C

Ni
stsdC ¼

Z
C

Ni
stf dC. ð4Þ
Let us insert the finite element approximations for the tractions in (4):
Z
C

Ni
sN

j
s
~tj

sdC ¼
Z

C
Ni

sN
j
f
~tj

f dC; ð5Þ
and solve for the solid tractions ~ts as
~ti
s ¼ ½M

ij
s �
�1fRj

sg; ð6Þ

where [Ms] is the consistent mass matrix for the solid interface elements and is defined by
½M ij
s � ¼

Z
C

Ni
sN

j
s dC; ð7Þ
and fRsg is the concentrated force vector,
Rj
s

� �
¼
Xms

i¼1

~ti
f

Z
C

Ni
f N

j
s dC. ð8Þ
Note that, in typical FSI applications, it is sufficient to evaluate (8) for the nodal load vector [10] without
solving (6) for the traction vector ~ts. We concentrate now on the schemes that can be used to evaluate (8),
which involves the shape functions on the solid side and the approximated traction field of fluid side. Sim-
ilar treatment of the interface displacement condition can be derived using the velocity continuity condi-
tion. For the evaluation of the energy, the definition of the virtual work can be conveniently used [10],
i.e., the conservation of energy can be achieved by an appropriate combination of load and displacement
transfer.

There are two essential requirements for transferring methods along the non-matching discrete interface.
The first is weak continuity of the traction and displacement fields (i.e., patch test). A method passes the patch
test if an arbitrary element patch on one mesh can represent a state of constant field for applied constant field
on another mesh. The second requirement pertains to satisfying the conservation of energy along the discrete
interface. These two conditions play a key role on the stability of transient FSI simulations. The following
subsection describes the load transfer schemes for evaluating the nodal load vector.

2.2. Load transfer schemes

As mentioned earlier, conservative load transfer schemes used for generic non-matching interfaces can be
categorized in three distinct classes: point-to-point, point-to-element and common-refinement schemes. In this
subsection, we present a brief summary of the point-to-element and the common-refinement schemes.

2.2.1. Point-to-element projection schemes

Two point-to-element projection schemes are commonly used in FSI, the node projection (N-P) and the
quadrature projection (Q-P), as illustrated in Fig. 2. First proposed in [10], the N-P scheme projects the fluid
nodes onto the solid surface element to extract the load vector on the solid interface nodes. In particular, the
extracted load vector on the solid surface node is then
Rj
s ¼

Xmf

i¼1

Nj
sðxiÞRi

f ; ð9Þ
where xi denotes the location of node i of the fluid interface mesh.
Similar to the N-P approach, the Q-P scheme proposed in [11] projects the fluid quadrature points onto the

solid surface element to extract ts and Rs on the solid boundary (Fig. 2). Specifically, Rs is evaluated by
Rj
s ¼

Xef

i¼1

Z
ri

f

Nj
s
~tf dC; ð10Þ



Fig. 2. Schematic of point-to-element projection schemes for load transfer.
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where ef denotes the number of elements on the fluid interface mesh and ri
f its ith element. It can be considered

as a rough discretization of the Galerkin weighted residual method, where the integration is performed piece-
wise over the fluid interface elements with numerical quadrature. To avoid the situation in which a solid target
element would receive no load, this scheme may rely on an adaptive quadrature rule by adaptively increasing
the number of quadrature points. Further details about this load transfer scheme can be found in [11]. Both
point-to-element transfer schemes are conservative but do not pass the traction continuity test due to the inac-
curate transfer of loads or tractions from the source fluid mesh to the target solid mesh, as illustrated in [13] by
a constant loading on one mesh and transferring it to another mesh. Hence, such schemes generally lead to
local errors for non-matching meshes while satisfying the conservation of energy across the distinct interface
meshes.

2.2.2. Common-refinement based scheme

This scheme defines a common refinement on a reference surface Cr of the fluid–solid interface. In the finite
element form, the spatial configuration of the fluid and solid interface meshes can be parameterized as
xf �
Xmf

i¼1

Ni
fðxÞ~xi

f on Ch
f ; xs �

Xms

j¼1

N j
sðxÞ~xj

s on Ch
s . ð11Þ
In the 2D common-refinement transfer formulations [13], the reference surface Cr can be computed by aver-
aging the input meshes on Ch

f and Ch
s .

In general, the topology of the common refinement is defined by the intersection of the elements of input
meshes, or the ‘‘subelements’’. There can be various situations of intersecting of elements rf and rs over Ch

f and
Ch

s , respectively. For example, in order to determine whether the two elements rf and rs intersect, we loop over
all the nodes of rf. The two elements intersect if we can find at least one node of rf that lies inside rs. This can
be easily achieved with the aid of the mapping of global to local coordinates available in any finite element
code. These subelements are illustrated in Fig. 3(a) for 2D and Fig. 3(b) for 3D. Note that, the intersection
of two arbitrary triangles or hybrid surface elements can be quite complex than the situation shown in
Fig. 3(b). The intersection of such 3D surface elements is described in [17].

In the common-refinement scheme, the load vector Rj
s over the common-refinement nodes is computed

as
Rj
s ¼

Xec

i¼1

Z
ri

c

N j
s
~tf dC; ð12Þ
where ec denotes the number of subelements on the common refinement, and ri
c denotes its ith subelement.

The integration point locations and their weight functions can be determined based on Gaussian or
Newton–Cotes integration.



Fig. 3. Schematic of common-refinement based projection scheme for load transfer in (a) 2D and (b) 3D; where shaded area denotes one
surface subelement.
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3. Non-matching curved interface

Let us now turn our attention to the central topic of the present work, i.e., the effect of curvature on the
accuracy of load transfer. For simplicity, we restrict our attention to smooth curves in Euclidean space R2.
The curvature at a point of a smooth curve, denoted by j, is the inverse of the radius of the osculating
circle, i.e., the circle that best approximates the curve locally. The curvature captures the rate of variation
of normal directions along the curve and is a local property of its shape invariant under Euclidean
motions.

As discussed previously, a primary difficulty of load transfer along curved non-matching discretized inter-
faces is that the fluid and solid meshes typically define two distinct discretizations of the interface. These dis-
cretizations will, in general, produce discrepancies in normal directions and areas as shown in Fig. 4. These
discrepancies may affect the accuracy of load transfer. The non-matching discrete curved interfaces may also



Fig. 4. A portion of smooth curved interface which has inconsistencies in normals and areas in two different discretization.
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arise due to geometric interpolation errors, and the discrepancies may increase due to accumulation of errors
during coupled simulations. These issues can be even more profound in 3D.

3.1. Normals and reference interface

From the interface conditions, it is important that the domains neither detach nor overlap during deforma-
tion. Furthermore, in the physical setting, the traction field must be continuous across the fluid–solid interface.
The equilibrium condition along the continuous interface for an inviscid fluid simply reads:
Fig. 5.
refinem
rðusÞns ¼ pnf on C; ð13Þ

where r(us) is the stress tensor on the solid side and is a function of the displacement field us, p is the fluid
pressure, and nf and ns are the local normals to the fluid–solid interface. The normals are related by
nf ¼ �ns on C. ð14Þ

The normal to a continuous interface is uniquely defined in a geometric sense in the case of smooth surfaces.
However, the calculation of the normal to a discretized interface is more challenging as the information about
the exact curved interface C is typically lost and only the computational meshes are usually available.

In the point-to-element projection scheme, the normals are computed on one side of the interface and are
then projected onto the target interface elements (Fig. 5(a)). Typically, the solid interface Ch

s is completely
ignored in this process. In the point-to-element projection scheme, the direction of the node normal can be
computed by averaging surrounding normal vectors to the edges. As shown in Fig. 5(a), the mapped normal
vector field over solid elements is discontinuous at the middle fluid node, and the projected segment [p1, p2] is
considered twice while projecting fluid edge normals directly. Due to this lack of continuity at pavg, this type of
normal computations may lead to the onset of spurious oscillations in transferring the discretized normals.
Therefore, such schemes may fail to satisfy equilibrium even for a uniform fluid pressure and may cause
(a) Discontinuity of normal projection in point-to-element transfer scheme, (b) regularity of normal nc projections via common-
ent subelements.
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non-physical acceleration of the interface during the simulations. We will analyze errors in the normal transfer
with the aid of a patch test in Section 4.

In the common-refinement based scheme, the subelements are generally defined on two discrete curves,
which may have different areas and normal directions. To avoid ambiguity in the normals, we define a con-
sistent common normal direction nc as a linear combination of nf and ns. A typical normal projection of
the subelements is shown in Fig. 5(b). There can be several variants of common-refinement based methods,
which utilizes different combinations of the normals and the subelement areas for the load transfer. If the fluid
and the solid nodes do not lie on the same smooth surface due to modeling or simulation errors, we can con-
struct an intermediate reference surface using both sides of normals and areas. Herein, we present two extreme
variants of common-refinement based discretization for the smooth surfaces with accurate geometric model-
ing: (a) source-based and (b) target-based discretizations.

The first variant is a source-based discretization, which has the subelements defined over the source
interface mesh. The basic steps to be performed in the source-based discretization are summarized as
follows:

1. Loop over subelements defined over fluid interface Ch
f ;

2. Loop over quadrature points of the subelements;
(a) Interpolate fluid traction and normals at the subelement quadrature points;
(b) Compute subelement area over fluid interface;
(c) Associate quadrature points onto corresponding solid element;
(d) Integrate traction vectors using areas of source-based subelements;

3. Compute solid load vector integral using (8);
4. End loop over the subelements.

This type of the common-refinement algorithm satisfies conservation of loads over non-matching interface
meshes because it integrates (6) and (8) on different meshes which may have discrepancies in areas and nor-
mals. However, this projection scheme is not independent of mesh sizes across the curved interfaces similar
to the point-to-element projection schemes. Therefore, it does not preserve exact continuity and compatibility
conditions along the non-matching curved interface.

The second variant, referred to as target-based discretization, has the subelements defined over the target
interface mesh Ch

s . The key difference in this type of discretization compared to source-based discretization is
in performing the integration of traction vectors using the areas of target-based subelements. This type of the
common-refinement schemes minimizes the error exactly over the target solid interface in a weak sense as the
integral
Z

Ch
s

/ðrðusÞns � pnfÞ dC ¼ 0; ð15Þ
for the standard basis functions / defined on the target solid interface mesh Ch
s . Due to differing areas of fluid

and solid elements, this scheme may not yield the same integral of traction field over two distinct fluid and
solid interface meshes.

The conservation of loads can be satisfied by an infinite number of possible nodal load vectors over the
distinct interfaces. To be physically consistent and meaningful, the transformation of load must also be accu-

rate, i.e., to have a small error in a specific norm, and the conservation of energy can be satisfied on a reference

interface [12]. Traditional point-to-element projection schemes try to enforce conservation of energy over two
distinct surface meshes, which may not yield physically equivalent definitions of the conservation of loads.
Furthermore, such schemes may lead to unbounded local errors along the interface [13].

A simple and reasonable choice of the reference surface is a convex combination of the input interface
meshes, i.e., Cr ¼ aCh

f þ bCh
s , where a and b are two non-negative constants with a + b = 1 [14]. Each mesh

point on this reference surface is associated with some point on the underlying source- and target-based dis-
cretizations. The fluid traction field and computed solid traction field are projected onto this reference inter-
face, upon which the load conservation is defined in the L1-norm as
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krðusÞnskL1ðCrÞ ¼ kpnfkL1ðCrÞ; ð16Þ
where k � kL1ðCrÞ ¼
R

Cr
½��dC. Therefore, the computation of load conservation over the reference interface is sat-

isfied by the integral
Z
Cr

w krðusÞnskL1ðCrÞ � kpnfkL1ðCrÞ

h i
dC ¼ 0; ð17Þ
for the standard basis functions w defined on the reference interface mesh Cr. For complex non-convex geom-
etries, it may become difficult to select a reasonable mapping for all points on the reference surface to the com-
mon-refinement discretizations.

3.2. Stability and conservation

We now address the issues of the energy conservation error and stability of the loosely-coupled iterative
algorithm defined on the reference interface. In particular, we show that satisfying the continuity conditions
element-wise is sufficient for the stability of the coupled simulations for a simple explicit staggered time step-
ping procedure [18]. Since there is no established nonlinear stability condition for analyzing the solution of the
nonlinear Euler and Navier–Stokes equations, we consider a linear fluid–solid interaction model based on the
linearized Euler (acoustic) and linear elastodynamic equations with well-posed initial and boundary
conditions.

3.2.1. Coupled system

We first present the formulation of the linear acoustic equation in terms of the pressure function p. The
boundary of Xf is the union of disjoint subsets Cn

f and Ce
f , on which natural and essential data are given,

respectively. Denoting the speed of sound by c, the strong formulation for linear acoustics reads as follows:
Given gf, p0;

op0

ot
: Xf ! R, find p : �Xf � ½0; T � ! R such that
1

c2

o2p
ot2
�r2p ¼ gf in Xf � ð0; T Þ; ð18Þ
with boundary conditions
p ¼ pe on Ce
f � ð0; T Þ;

op
onf

¼ pn on Cn
f � ð0; T Þ;
and initial conditions
pðx; 0Þ ¼ p0;
opðx; 0Þ

ot
¼ op0

ot
; x 2 Xf .
Similarly, we investigate the deformation of an elastic body Xs with density qs under given time-dependent
volume and surface forces denoted by gs and gn. The strong formulation for elastodynamic problems then
reads as follows: Given gs, u0;

ou0

ot : Xs ! R, find us : �Xs � ½0; T � ! R such that
qs

o
2us

ot2
� divðrðusÞÞ ¼ gs in Xs � ð0; T Þ; ð19Þ
with boundary conditions
us ¼ ue
s on Ce

s � ð0; T Þ; ½rðusÞ� � ns ¼ gn on Cn
s � ð0; T Þ;
and initial conditions
uðx; 0Þ ¼ u0;
ouðx; 0Þ

ot
¼ ou0

ot
; x 2 Xs.
Since an acoustic medium can be considered as an elastic medium with zero shear modulus [19], the motion of
each part of the composite medium can be described by a system of elastic wave equations:
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qi
o2ðuiÞ
ot2

¼ divrðuiÞ þ gi in Xi; ð20Þ

rðuiÞ ¼ kidivðuiÞI þ 2li�ðuiÞ; ð21Þ

�ðuiÞ ¼
1

2
½rui þ ðruiÞT�; ð22Þ
where i = f, s. In Xi, ui denotes the displacement vector, ki, and li are the Lamé constants (with lf = 0), qi,
denotes the density, gi denote source terms, and I stands for the identity tensor. r and � are the stress and
strain tensors, respectively. In the fluid domain, r ” pI. This coupled model is physically stable, i.e., has a solu-
tion that does not grow indefinitely in time. The objective herein is to present a mathematical framework for
the stability analysis of the spatial interfacing methods across the non-matching discretization. We assume
that there is no numerical energy dissipation in the discrete time and space and that each system is stable under
standard CFL conditions.

3.2.2. Transformation of interface conditions

To derive the stability condition of the coupled model, we must first transform the interface conditions
using the above pressure–displacement formulation (20)–(22). From (20), the velocity continuity can be
expressed as
qf

o
2ðus � nsÞ

ot2
¼ qf

o
2ðuf � nfÞ

ot2
¼ divðrðufÞÞ � nf ¼

op
onf

on C; ð23Þ
which implies that
op
onf

¼ qf

o
2us

ot2
� ns on C. ð24Þ
Here we have used the fact the source gf vanishes on the interface C, and ns and nf along C are time-invariant
for the infinitesimal deformation. From the conventional interface condition (23), we derive a transformed
interface condition:
qf

o
2us

ot2
þ xr

ous

ot

� �
ns ¼

op
onf

ns � x
op
ot

ns on C; ð25Þ
where (25) is obtained by differentiating (13) with respect to t, i.e.,
r
ous

ot

� �
ns ¼

op
ot

nf ; ð26Þ
multiplying with a positive dimensional constant x (to make the combination dimensionally consistent), using
(14), and then adding with (23). Similarly, we obtain a transformed representation of (24) by adding the rela-
tion op

ot ¼ �r ous

ot

� �
ns � ns multiplied by x:
op
onf

þ x
op
ot
¼ qf

o2us

ot2
� ns � xr

ous

ot

� �
ns � ns on C. ð27Þ
The new forms (25) and (27) of the interface conditions are constructed for the consistency of the residual
interface energy, which is introduced as part of the stability analysis presented next.

3.2.3. Stability analysis
For simplicity, we analyze the stability of the linearized Euler and linear elasto-dynamic equations at the

differential level, and show that the error in the energy transfer decreases monotonically when the continuity
conditions (25) and (27) are satisfied element-wise (i.e., patch test). We also show that the energy conservation
is automatically satisfied on the aforementioned reference fluid–solid interface, Cr.

Based on the new form (25) and (27) of the interface conditions, we construct the explicit staggered iterative
procedure described in Algorithm 1, which serves as the foundation of our stability analysis.
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Algorithm 1. Explicit staggered scheme for the linearized transient FSI problem

1. Start from initial conditions to (18) and (19)
2. Generate {pn}nP0 and fun

sgnP1 iteratively as follows:
(a) Solve acoustic equation (18)
1

c2

o2pn

ot2
�r2pn ¼ gn

f in Xf � ½0; T �

(b) Solve interface condition (25)

qf

o2unþ1
s

ot2
þ xr

ounþ1
s

ot

� �
ns ¼

opn

onf

ns � x
opn

ot
ns on Cr � ½0; T �

(c) Solve elastodynamic equation (19)

qs

o2unþ1
s

ot2
� divðrðunþ1

s ÞÞ ¼ gn
s in Xs � ½0; T �

(d) Solve interface condition (27)

opnþ1

onf

þ x
opnþ1

ot
¼ qf

o2un
s

ot2
� ns � xr

oun
s

ot

� �
ns � ns on Cr � ½0; T �
As in [20], let us introduce the error functions r in the fluid and e in the solid at the nth iteration as
rn ¼ p � pn; en ¼ us � us. ð28Þ
From linearity of the acoustic and elastodynamic equations, the error functions (rn, en) satisfy:
1

c2

o2rn

ot2
�r2rn ¼ 0 in Xf � ½0; T �; ð29Þ

qf
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� ns þ xr
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� �
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orn

onf

� x
orn

ot
on Cr � ½0; T �; ð30Þ

qs

o
2enþ1

ot2
� divðrðenþ1ÞÞ ¼ 0 in Xs � ½0; T �; ð31Þ
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¼ qf
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ot2
� ns � xr
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ot

� �
ns � ns on Cr � ½0; T �. ð32Þ
Now let us consider the energy state of the interface across non-matching meshes. Physically, the interface
should neither produce nor damp the energy during the information transfer in finite time s. Let us also define
the ‘‘residual energy’’ En+1 along the interface for L2 integrable fluid pressure and solid displacement as the
space and time integral [20]:
Enþ1 ¼ qf

o2enþ1

ot2
� ns þ xr

oenþ1

ot

� �
ns � ns

				
				

2

L2ðð0;sÞ;L2ðCrÞÞ
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þ x
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ot

				
				2

L2ðð0;sÞ;L2ðCrÞÞ
; ð33Þ
where k � k2
L2ðð0;sÞ;L2ðCrÞÞ ¼

R s
0

R
Cr
½��2dCdt.

Due to the L2 minimization involved in the common-refinement scheme (see Eq. (15)), we satisfy the inter-
face conditions (30) and (32) element-wise in a weak sense across non-matching meshes. Note, however, that
these interface conditions may not be satisfied by the point-to-element treatment when there is a mismatch
between the fluid and solid meshes along the interface [13]. We assume that the load and motion transfer inte-
grals are performed with sufficient accuracy so that in the assessment of stability a numerical integration error
can be neglected. Hence, locally accurate load and motion transfer by the common-refinement method allows
us to use (30) and (32) to express the residual energy as:



R.K. Jaiman et al. / Journal of Computational Physics 218 (2006) 372–397 383
Enþ1 ¼ orn

onf

� x
orn

ot

				
				2

L2ðð0;sÞ;L2ðCrÞÞ
þ qf

o
2en

ot2
� ns � xr

oen

ot

� �
ns � ns

				
				

2

L2ðð0;sÞ;L2ðCrÞÞ
. ð34Þ
Through some algebraic manipulations, we rewrite En+1 as:
Enþ1 ¼ qf
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ð35Þ
so we obtain the following identity:
Enþ1ðsÞ ¼ EnðsÞ � RnðsÞ for n P 1. ð36Þ
The term Rn consists of products of load and motion transfer error terms and represents the integrated error in
residual energy at the nth iteration along the reference interface.

We now show that Rn has a positive lower bound in terms of the error estimates for the fluid and solid
equations. We can find a lower bound for Rn by testing (29) against orn

ot and assuming rnð0Þ ¼ orn

ot ð0Þ ¼ 0.
For all s 2 (0, T], we have
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Similarly, differentiating (31) with respect to t and testing it against o2en

ot2 leads to
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where enð0Þ ¼ oenð0Þ
ot ¼ 0;

ffiffiffiffiffi
qs

p o2enð0Þ
ot2

			 			 ¼ ffiffiffiffi
ks

p
divðoeð0Þn

ot Þ
			 			 ¼ 0 and c0 is a positive constant. Every term on the

right-hand side of (37) and (38) is a non-negative term. Hence, Rn has a positive lower bound and
Enþ1ðsÞ 6 EnðsÞ. ð39Þ

This stability result, which is similar to that proved in [20] for matching meshes, confirms that the common-
refinement scheme that satisfies the weak continuity and compatibility conditions across non-matching meshes
preserves the stability condition.

3.2.4. Conservation analysis

Let us return to the minimization-based load conservation relation (16) defined on the reference interface
Cr. We now aim to show that total energy conservation error associated with (16) decays with time. To that
effect, based on the interface conditions (30) and (32), let us consider the work quantity
W nþ1 ¼
Z

Cr
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o
2enþ1

ot2
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ot

� �
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� �
ornþ1
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þ x
ornþ1

ot

� �
dC


. ð40Þ
which represents the product of load and motion transfer at the (n + 1)th iteration. From the Cauchy–
Schwarz inequality, we can express Wn+1 as
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where the right-hand side (41), denoted hereafter by In+1, represents an upper bound for the net energy con-
servation error. Combining (16) with (30) and (32), we get
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For any positive and bounded perturbation terms � and d, we have kf � �kL1ðCrÞkg � dkL1ðCrÞ 6
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from which it immediately follows that
Inþ1
6 In; ð44Þ
i.e., the resulting integrated error in the energy transfer I at the (n + l)th iteration is found to be always less
than that at the nth iteration along the reference interface constructed by the common-refinement scheme.

The stability and conservation of energy results are of practical interest to many fluid–solid interaction
applications where the local errors along the interface caused by the point-to-element schemes can lead to
spurious oscillations and overshoots in the coupled simulations. To assess further the accuracy and stability asso-
ciated with the point-to-element and common-refinement load transfer schemes, we next turn our attention to
three test problems of increasing complexity: the first problem involves a static circular interface with varying
mesh resolutions while the other two consist of transient fluid–solid interaction problems with deforming
interfaces. As mentioned earlier, our numerical study focuses on 2D FSI problems for simplicity. The compar-
ative assessment of the precision of the load transfer schemes is however expected to generalize to higher
dimensions.

4. Static circular-arc problem

The first model problem used to assess the effects of grid mismatch and curvature on the accuracy of the
conservative load transfer schemes consists of the semicircular interface shown in Fig. 6. The traction field
is applied on the discrete fluid interface Ch

f , and piecewise linear basis functions are defined with respect to
discrete solid interface Ch

f . For this simple geometry, the analytical solution for piecewise continuous traction
fields is known along C.

Let us denote by xi
f ; i ¼ 1; . . . ms, the nodes on Ch

f . We associate with each node xi
f the corresponding unit

normal vector ni
f and the piecewise linear basis function N i

f . In the model problem, the fluid traction tf is simply
Fig. 6. Circular-arc problem. Left: geometry; Right: interface discretization.
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given by tf = pnf, where p is assumed to be uniform for simplicity. The approximation ~nf for the fluid normal nf

is given by ~nf ¼
Pmf

i¼1N j
fn

j
f . From (6) and (8), we then have
~ni
s ¼ �½M ik

s �
�1 ¼

Xms

k¼1

nj
f

Z
C
¼ Ni

f N
k
s dC; ð45Þ
where ½M ik
s � ¼

R
C Ni

sN
k
s dC. Due to the non-matching nature of the meshes, there is a regularity problem of

numerical quadrature arises when evaluating the integral
Z
C

Nj
f N

k
s dC. ð46Þ
The Gaussian or Newton–Cotes quadrature rule assumes smoothness of the integrand functions within an
interval and they can be arbitrary inaccurate for non-smooth functions [21].

The basic objective is thus to analyze the transfer of the discretized normal vector field, n, onto the solid side
discrete interface Ch

s using (45). Note that this normal vector transfer procedure needs an inversion of the con-
sistent mass matrix to compute the projected normal (traction) field on the solid side. However, this linear
inversion of the mass matrix may be avoided in the transient fluid–solid interaction problems as the solid
solver utilizes the external load vector from (8). In the next three subsections, various aspects of the normal
vector transfer are analyzed.

4.1. Asymptotic analysis

To explain the different behavior of the discretized normal vector transfer, we consider representative fine-
to-coarse (hs/hf = 1.5) and coarse-to-fine (hs/hf = 0.75) discretizations over Ch

f and Ch
s . The shape functions are

assumed to be linear, so the approximation of the normals on Cf is piecewise linear. The analytical input nor-
mals for the fine-to-coarse projection are shown in Fig. 7(a).

In the fine-to-coarse projection, we see that both the source- and target-based common-refinement schemes
project the normals matching with the analytical normal vector field (Fig. 7(b)). Due to the lack of regularity,
the point-to-element projection schemes show large errors in the transfer of normals in terms of both direction
and magnitude (Fig. 7(c)–(d)). Further, in the case of coarse-to-fine projection (Fig. 7(e)–(f)), the target-based
common-refinement scheme again yields normal vectors similar to the analytical ones, while the node-
projection scheme yields inaccurate transfer of the discretized normals, and in some cases reversed the normal
direction due to inaccurate projection.

Let us introduce the relative error in the normal vector ns, as
�n ¼
ns � nexact

s

		 		
2

nexact
s

		 		
2

; ð47Þ
where nexact
s is computed over Cs from the exact normal field, and ns is obtained from (45). Using a Taylor

series expansion, the asymptotic error of non-conservative consistent interpolation method [8] across the
non-matching interface is Oðh2

f þ h2
s Þ for a given piecewise continuous normal vector field. However, due to

inaccurate transfer, the point-to-element projection schemes are sub-optimal and the local errors along the
interface do not necessarily diminish with mesh refinement. The common-refinement methods rely on the
weighted residual method, which provides optimal and conservative projection of the normal field in the L2

space defined by the solid shape functions. Therefore, the asymptotic errors of such methods have the same
order of accuracy as the consistent interpolation method [14], as shown in Fig. 8(a). The ratio of the number
of target (solid) to source (fluid) edges is kept constant at 1.25. The error measured in the L2 norm is calculated
at each refinement step from the known analytical normal (traction) vector field and the varying mesh size hs is
multiplied by the curvature j. As apparent in Fig. 8(a), the source-based common-refinement has optimal con-
vergence (i.e., quadratic convergence) with the geometric interpolation of Oðh2

f þ h2
s Þ while the target-based

common refinement enables exact transfer of the uniform normals. As expected, we can see sub-optimal
behavior of the point-to-element projection schemes, which have order of accuracy O(hq), where q is less than
one.



(a)

(c)

(e)

(b)

(d)

(f)

Fig. 7. Transfer of discretized normals onto discrete solid interface: (a)–(d) Fine-to-coarse projection with hs/hf = 1.5: (a) input normals,
(b) common-refinement, (c) quadrature-projection and (d) node-projection. (e)–(f) Coarse-to-fine projection with hs/hf = 0.75: (e)
common-refinement, (f) node-projection.
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Next, we analyze the load conservation of common-refinement based methods. To quantify the conserva-
tion error, we define �c for the source- and target-discretizations on the two meshes and for the reference inter-
face as
�c ¼

R
Cf

tf dC�
R

Cs
tsdC

			 			
1R

Cf
tf dC

			 			
1

on two meshes Cf and Cs;

R
Cr
ðtf�tsÞdC

			 			
1R

Cf
tf dC

			 			
1

on reference surface Cr.

8>>>>>>><
>>>>>>>:

ð48Þ
As apparent in Fig. 8(b), the source-based subelement discretization is conservative over two distinct interface
discretizations. However, due to differing areas, the conservation error of the target-based subelement



Fig. 8. Decay of the error under simultaneous refinement: (a) accuracy of load transfer schemes in L2 norm error �n from analytical
solution, (b) load conservation error �c for two variants of common-refinement and over reference interface (a = 0.5 and b = 0.5). �n and �c
are defined in (47) and (48), respectively.
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discretization decays with mesh resolutions as Oðh2
f þ h2

s Þ. When a reference unique interface is used, the errors
in the load conservation is not affected by the discrepancy in the geometric interpolation. Therefore, we can
have an optimal convergence in the accuracy with strict load conservation over the unique reference interface.
In the remainder of this paper, we therefore employ only target-based subelements as accuracy is a primary
concern and conservation of energy over the reference interface is sufficient for the stability of the coupled
simulations as discussed in subsection 3.2.

4.2. Grid mismatch analysis

The semi-circular arc problem can also be used to assess the sensitivity and accuracy of the load transfer
schemes with respect to mesh resolution and mismatch. A range of grid mismatches is obtained by varying
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the ratio of the numbers of source (fluid) and target (solid) elements (with matching end points). A traction
vector profile is prescribed analytically over the interface to have either constant, linear, or quadratic functions
on Ch

f . The number of nodes of the fine mesh is fixed, while that of the coarse mesh varies. We compute the
relative error in the load vector Rs as
Fig. 9.
with th
�l ¼
Rs �Rexact

s

		 		
2

Rexact
s

		 		
2

; ð49Þ
where Rexact
s is computed over Cs from the analytical traction field. If the traction field over Ch

s was obtained by
solving (6), then relative errors in the tractions could be defined similarly.

As seen in Fig. 9, large errors in the quadrature-projection scheme compared to that for common-refine-
ment scheme occur due to the lack of regularity of the quadrature rules. To verify this claim and characterize
the oscillatory patterns in the errors of the point-to-element schemes for the two uniformly spaced meshes with
the size of h1 and h2, we define a normalized curvature function for the linear basis functions as
CFðh1; h2Þ ¼ jh2

h1

h2

� �2

þ 1

" #
; ð50Þ
and a grid-mismatch function [13]:
GMMðh1; h2Þ ¼ max nint
h1

h2

� �
� h2

h1

� �
;

h2

h1

� �� �
� 1


; ð51Þ
where j represents the discretized curvature for a given segment of the target mesh and nint function rounds a
real number to its nearest integer. The GMM function for a given mesh measures how close the ratio h1/h2 is
to a positive integer, and a larger value of GMM would, in general, correspond to a more severe violation of
the regularity assumption.

Since the common-refinement scheme solves the least squares minimization (3) for non-matching meshes,
the overall error of this scheme is directly proportional to the curvature function based on h1 = hs and h2 = hf.
Therefore, we estimate the common-refinement error as
Dependence of load vector error �l defined in (49) on relative mesh ratio hs/hf for the three load transfer schemes, and correlation
e corresponding analytical error functions in (52)–(54) with a = 0.015 and b = 0.96.



ECR ¼ aCFðhs; hfÞ; ð52Þ

where a is a constant, which can be adjusted to correlate well with the overall numerical error. For the node-
projection (N-P) scheme, the total error includes grid mismatch and thus takes the form:
ENP ¼ max½a CFðhs; hfÞ; b GMMðhs; hfÞ� ð53Þ
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Fig. 11. Effect of the curvature j on the least squares error associated with the three load transfer schemes at various curvatures j for a
mesh ratio hs/hf = 1.18 and expected correlation with the corresponding analytical error functions.
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as demonstrated in Fig. 9, where b is another constant. For the quadrature-projection (Q-P) scheme, which
applies an adaptive quadrature rule when the fluid (source) mesh is coarse, the errors can be expected to cor-
relate with the symmetric grid-mismatch function,
EQP ¼ max½aCFðhs; hfÞ; bðminfGMMðhs; hfÞ; GMMðhf ; hsÞgÞ�. ð54Þ

As can be seen in Fig. 9, the common-refinement scheme performs within the interpolant error for all the
cases. For the node- and quadrature-projection schemes, however, the L2 error depends strongly on the grid
mismatch. The errors in these two schemes oscillate with the grid mismatch and match with the interpolant
error at isolated points where the fine mesh is nested in the coarse mesh (e.g., hs/hf = 2.0). Therefore, these
above error expressions in (52)–(54) reasonably capture the errors for all the three schemes and can be useful
for a priori accuracy assessment. In particular, this key result will allow extension of this work to adaptive
interfacing methods.

4.3. Effects of curvature

We now study the effect of curvature on the load transfer schemes using the set of circular arcs shown in
Fig. 10(a). Fig. 10(b)–(d) present L2 error with respect to the mesh ratio hs/hf for the three schemes with vary-
ing curvatures. It is apparent that the error in the common-refinement based scheme decreases monotonically
as the curvature decreases. At j � 0.0, this load transfer scheme reduces to the flat interface solution [13] and
produces exact load transfer within machine precision. On the other hand, the errors in the point-to-element
projection schemes, which can be approximated by ENP in (53), do not decrease monotonically as the curva-
ture decreases, and the errors depend on the grid mismatch. These trends are demonstrated in Fig. 11, which
shows the L2 error with respect to the curvature values at a representative mesh ratio, hs/hf = 1.18.

5. Superseismic shock-bump problem

We now turn our attention to an actual transient FSI problem consisting of a shock in a compressible
fluid traveling at a superseismic speed over a curved elastic half space, i.e., at a speed Vsh that exceeds the
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dilatational wave speed of the solid. This problem presents an interesting coupling between fluid and solid
solutions since the deformation of the elastic solid behind the traveling shock affects the fluid flow by changing
the shock angle and thereby the intensity of the pressure jump across the shock. Although difficult to produce
physically, this coupled problem is studied here because it has an analytical self-similar solution (in the frame
of the traveling shock) for the special case of a flat interface and has been well studied [13]. The curved bound-
ary case studied here does not have an analytical solution but still constitutes an excellent test problem to
quantify the effect of the curvature on the precision of the load transfer along the fluid–solid interface.

The problem geometry and its discretization with regular and uniform triangles are illustrated in Fig. 12 for
the representative case jL = 1.8, where j and L are the curvature and horizontal length of the bump, respec-
tively. A close-up of the gaps between the non-matching meshes along the bump is also shown in the figure. In
this study, we select the fluid flow and solid material properties such that the acoustic impedances of the two
media are comparable and a significant two-way coupling occurs in a very short time duration. For the linear
elastic solid, we use the properties similar to those of copper: Poisson’s ratio m = 0.33, density qs = 8970 kg/m3

(to ensure superseismic conditions), and Young’s modulus E = 110 GPa. For the fluid, we use a perfect gas
with the ratio of the specific heats, c = 1.4, an artificially high initial density, q1 = 1033 kg/m3, and an initial
pressure p1 = 5.55 GPa. The initial upstream Mach number for this problem is M1 = 2.952. We consider the
unshocked fluid system to be under initial pressure p1 and the solid domain to be traction free, i.e., there is a
zero applied pressure load in the undisturbed fluid region.

5.1. Grid mismatch analysis

Fig. 13(b)–(d) present contour plots obtained with the three load transfer schemes using the same spatial
and temporal discretization for a curved non-matching interface with hs/hf = 1.18 at jL = 0.75. Fig. 13(b) cor-
responds to the common-refinement based load transfer scheme. For this load transfer scheme, the fluid and
solid solutions are quite uniform and very similar to matching interface solutions. On the other hand, the
results shown in Fig. 13(c) and (d) exhibit significant spurious oscillations in the shear stress along the curved
interface due to the inaccurate load transfer by the Q-P and N-P schemes, respectively, as also found in [13] for
flat interfaces.

This effect is further quantified in Fig. 14(a), which shows the normalized shear stress distribution along the
curved bump boundary for hs/hf = 1.18 at t = 80 ms. As compared to the matching solution, the point-to-
element projection schemes yield an oscillatory solution behind the shock obtained with errors reaching up
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Fig. 12. Superseismic shock-bump problem: representative non-matching meshes with grid ratio of hs/hf = 2.22 at jhf = 0.09 (jL = 1.8).
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Fig. 13. Superseismic shock-bump problem with jL = 0.75: contours of pressure in the fluid domain and shear stress in the solid domain
for various load transfer schemes: (a) matching meshes (hs/hf = 1.0), (b) common-refinement based scheme, (c) quadrature-projection
scheme, (d) node-projection scheme. In (b), (c), and (d), the interface meshes do not match and hs/hf = 1.18.
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to 5% in the normalized shear stress distribution. The common-refinement scheme, however, yields results
almost identical to those obtained with matching meshes (though a higher value of a results due to the
increased flow complexity and the introduction of deforming interface). This shows that satisfying the traction
continuity locally is critical for the load transfer to prevent spurious oscillations along the interface.

The effect of the grid mismatch on the least squares error on the shear stress along the curved boundary is
presented in Fig. 14(b). In the absence of a closed-form analytical solution, the error is computed by compar-
ison with the reference solution with matching meshes. We also see correlations between the error functions
and the non-uniformity errors for the point-to-element projection schemes. These results are in agreement with
the grid mismatch study of the static circular-arc analytical results presented in the previous section, and high-
light the importance of the accurate load transfer across non-matching meshes for fluid–solid interaction
applications.

5.2. Effects of curvature

As in the static circular-arc problem, we now study the effect of curvature on the solutions for the three load
transfer schemes in the superseismic shock-bump problem. The outcome of this study is presented in Fig. 15 in
terms of the least squares error on the interface shear stress computed along the curved bump for various



(b)

(a)

Fig. 14. Solutions along the curved interface (jL = 0.75) for three load transfer schemes on non-matching meshes (hs/hf = 1.18) and
matching reference solution (hs/hf = 1.0) at time t = 80 ms: (a) solid shear stress distribution over Ch

s , (b) effect of the grid mismatch on the
L2 error on the interface shear stress and comparison with the proposed analytical error functions in (14)–(16) with new constant values
a = 0.11 and b = 1.08.
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curvatures for non-matching meshes with hs/hf = 1.18. This figure shows that the L2 error in the common-
refinement scheme increases monotonically with the curvature, and the error is minimum for the flat interface
case. In contrast, the point-to-element projection schemes show the largest errors for flat interfaces. These
findings are consistent with the static circular-arc results (see Fig. 11).



Fig. 15. Least squares error in the interface shear stress associated with the three load transfer schemes for six curvatures values j at
hs/hf = 1.18, and expected correlations with the corresponding analytical error functions.

394 R.K. Jaiman et al. / Journal of Computational Physics 218 (2006) 372–397
6. Blast wave problem

To demonstrate the effects of load transfer schemes on a more practical problem involving a curved inter-
face, we now consider the deformation of a curved solid interface subjected to a blast wave. This study enables
accurate assessment of structural strength and failure under sudden blast loading in a safety related situation
e.g., solid rocket motor, explosives, chemical processing. A blast wave arises due to the rapid release of energy
in a gas. A typical pressure–time curve for an explosive blast wave is presented in [22].

In the present study, the blast wave is assumed to be planar. To generate the blast wave, a high pressure
layer of a finite thickness 2xo is considered at a distance xb This problem is similar to the problem of sudden
rupture of a membrane in ideal shock tube [23]. After the explosion, the planar shock wave, contact discon-
tinuity and fan of rarefaction waves form and the interaction between the head of rarefaction wave and the
shock wave front leads to the nonlinear blast wave profile.
Fig. 16. Blast wave problem: (a) schematic and computational domain, (b) non-matching meshes along the curved boundary with non-
uniform spacing of fluid grid points.
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b)Fig. 175 Blast wave problem: comparison of interface solutions for
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The computational domain with the initial conditions of the blast wave problem is shown in Fig. 16(a). In
this representative curved interface problem, jL is equal to 1.8, where j and L are the curvature and horizon-
tal length of the bump. The high pressure layer is positioned at xb = 1.1 L and the half-thickness of the layer is
x0 = 0.033 L. In the solid domain, we use isotropic properties similar to those of the solid propellant: Poisson’s
ratio v = 0.499, density qs = 1300 kg/m3, and Young’s modulus E = 10 MPa. For the fluid, we use a perfect
gas with the physical parameters, an initial density q0 = 1.293 kg/m3, and an initial pressure p0 = 1.0 atm. The
ratio of specific heats c is taken to be 1.4 and the viscosity is neglected in this calculation. The initial param-
eters in the high pressure layer p1, q1, etc. are calculated according to the shock tube theory [23]. The initial
pressure ratio p1/p0 has been set to 33.81 as in [22]. Fig. 16(b) shows the meshes in the fluid and solid domains.
three load transfer schemes with reference matching solution at timet= 0 2 s: (a) total displacement magnitude of solid side interface nodes,uis
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The fluid domain has a relatively fine and irregular triangular mesh with the non-uniform distribution of mesh
points along the curved boundary.

Transient numerical solutions are obtained with matching and non-matching meshes for this coupled blast
wave problem. As expected, a nonlinear blast wave profile propagates over the curved solid boundary intro-
ducing small deformations. Fig. 17(a) depicts the total displacement magnitude ðj ui

s jÞ. The figure clearly illus-
trates the oscillatory nature of the solution obtained with the two traditional load transfer schemes, with
errors reaching up to 20%. The common-refinement scheme, however, yields results almost identical to those
obtained with the matching meshes. Fig. 17(b) depicts the normalized shear stress distribution (rxy/p0) along
the interface of the solid domain. Similar behaviour is noted with respect to the accuracy of the common-
refinement scheme and the oscillations of the point-to-element schemes.

It should be noted that the spurious oscillations of the point-to-element treatments did not lead to insta-
bilities severe enough to cause the simulations to stop (blow up). This may be due to numerical dissipation
occurred in the complex coupled system consisting of the upwinding-based finite-volume scheme in the moving
fluid domain and the standard finite-element scheme in the solid domain.
7. Conclusion

We have presented a systematic analysis of conservative load transfer schemes based on point-to-element
projection and common-refinement schemes with special emphasis on the effects of grid mismatch and curva-
ture. The common-refinement based projection with a new definition of load conservation over a reference
surface has been discussed. By analyzing a general linear fluid–solid interaction model, we have shown that
the common-refinement scheme is sufficient for the stability of the coupled simulations while enforcing energy
conservation over the reference surface. We have analyzed computations of normals and areas for conserva-
tive load transfer over the curved interface boundary and shown that the common-refinement scheme with
target-based discretization satisfies the interface conditions across non-matching meshes with load conserva-
tion over the reference interface. On the other hand, the point-to-element projection schemes, which violate
the interface conditions, were found to exhibit spurious numerical oscillations for a superseismic shock-bump
and a blast wave FSI problems. The errors of these schemes were shown to depend on the grid mismatch and
did not decrease monotonically as the curvature decreased. In addition, a detailed convergence study has been
performed to assess the order of accuracy of the schemes. Finally, simple analytical formulations for the error
associated with the various schemes were also constructed and shown to correlate well with observed numer-
ical errors.
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